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Large-strain dynamic cavity expansion in a granular material
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Abstract. The dynamic problem of the symmetric expansion of a cylindrical or spherical cavity in a granular
medium is considered. The constitutive behaviour of the material is governed by a hypoplasticity relation for gran-
ular soils capable of describing both monotonic and cyclic deformation. The problem is solved numerically by a
finite-difference technique. A nonreflecting boundary condition used at the outer boundary of the computational
domain makes it possible to model a continuous multi-cycle loading on the cavity wall. The solution is illus-
trated by numerical examples. Possible geomechanical applications to the modelling of the vibratory compaction
and penetration in granular soils are discussed.
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1. Introduction

The present paper is devoted to the numerical solution of the dynamic problem of the sym-
metric expansion of a cylindrical or spherical cavity in a granular medium. The study is ori-
entated towards geomechanical applications. The cavity-expansion problem is widely used in
geomechanics for the modelling of various processes (e.g. penetration) in soils and rocks [1].
As far as granular soils are concerned, most analyses of the cavity-expansion problem are
carried out for the quasi-static monotonic expansion in order to determine the limit pressure
and/or the pressure-expansion curve [2–7].

For the modelling of processes in which the rate of loading is high, the use of a quasi-
static formulation of the cavity problem is inadequate, and a dynamic formulation is neces-
sary. The difference between the quasi-static and the dynamic solutions may be substantial.
For instance, for a cylindrical cavity in a linear elastic medium, the stresses in the quasi-static
problem vary as 1/r2, while in the dynamic problem the stresses decay asymptotically for
r →∞ as 1/

√
r.

In the geotechnical context, it is clear intuitively that the modelling of such processes as
vibratory pile driving or deep vibratory compaction (also called vibroflotation [8]) requires
a dynamic formulation. However, because of the nonlinear behaviour of soils at large defor-
mations, it may be difficult to make a quantitatively justified a priori judgement about the
necessity of using the dynamic formulation for a particular problem. In the case of the cavity
problem with a periodic boundary condition, a quantitative criterion for using the dynamic
formulation is that the wavelength for a given frequency is of the same order as or smaller
than the cavity diameter. The difficulty in using this criterion consists in the fact that the
incremental stiffness of a soil changes considerably during large plastic deformation. The
speed of propagation of small-amplitude elastic waves, which is often known for a particu-
lar soil, is not applicable to the estimation of the wavelength when the large-strain expansion
of a cavity is studied: the wave speed corresponding to the incremental stiffness may be much
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lower and, moreover, hardly predictable as it depends on the strain. In such cases the neces-
sity of using a dynamic formulation can only be justified after the solutions to the dynamic
problem have been obtained. This issue is discussed in more detail below in Section 5 where
numerical examples are considered.

In this paper we solve the dynamic problem allowing for the possibility of prescribing
a multi-cycle loading on the cavity wall expressed either through the cavity pressure or the
cavity radius. Unlike problems with a monotonic or single-cycle loading, the cavity expan-
sion problem with a multi-cycle boundary condition requires the use of a proper constitutive
model which realistically describes the behaviour of a granular material under repeated load-
ing and, in particular, its gradual compaction under cyclic shearing. In this study we employ
an extended constitutive relation of the hypoplasticity theory developed in [9] and capable of
describing both monotonic and cyclic deformation of granular materials such as sand. This
hypoplasticity relation was used earlier in [10–12] for the numerical solution of dynamic plan-
wave problems for granular soils. A number of particular solutions to the dynamic-cavity
problem with a simple version of the hypoplasticity relation were obtained in [13].

The constitutive theory used in the present study is outlined in Section 2. The mathemati-
cal formulation of the initial-boundary-value problem is described in Section 3. The problem
is solved numerically by a finite-difference technique described in Section 4. Numerical exam-
ples are given in Section 5, and possible geotechnical applications are briefly discussed at the
end of the paper.

2. Hypoplasticity relations

The theory of hypoplasticity originated as an alternative to elasto-plasticity theories for the
purpose of describing the plastic deformation of granular materials without the introduction
of a yield surface, a flow rule and without the decomposition of the deformation into an elas-
tic and a plastic part. Attempts to find a suitable mathematical form including the pressure
and density dependence of the stiffness had led to an equation written in rectangular coordi-
nates as [14, 15]

dTij

dt
=Lijkl(T, e)Dkl +Nij (T, e)‖D‖, (1)

where T is the Cauchy stress tensor, D is the stretching tensor (the symmetric part of the
velocity gradient), e is the void ratio, t is time, and d( )/dt stands for the material time deriv-
ative (for simplicity, we write the material time derivative instead of an objective stress rate;
for the velocity fields considered in this paper the objective Jaumann stress rate used in hypo-
plasticity coincides with the material time derivative). The fourth-order stiffness tensor L and
the second-order tensor N in (1) are responsible, respectively, for the linear and the nonlinear
parts of the constitutive relation. The term ‖D‖ = √

DijDij makes the constitutive equation
incrementally nonlinear. Material parameters involved in a specific form of the tensors L and
N are independent of the stresses and the density. Equation (1) also allows the critical-state
concept to be incorporated into the theory. The tensors L and N are given in detail in the
Appendix.

A limitation of the hypoplasticity concept expressed in the form (1) is the so-called rat-
cheting which manifests itself in an unrealistically high rate of accumulation of deformation
or stress during repeated multi-cycle loading with small strain amplitudes (below 10−2) [16,
17]. This is inevitable as long as the state of a granular material and therefore its stiffness
are determined only by stresses and density.
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In order to better describe the behaviour of granular materials and, in particular, their
response to alternating cyclic loading, the concept of intergranular strain was introduced in
[9] as an extension of hypoplasticity. This concept as such is not related to a specific hypo-
plastic equation and is applicable to any equation of the form (1). The extended constitutive
theory contains a so-called intergranular-strain tensor � as a new state variable which carries
the information about the history of the deformation and determines the state of the material
along with the stress tensor and the void ratio.

The hypoplasticity relation in the extended form becomes

dTij

dt
=Mijkl(T,D,�, e)Dkl, (2)

where the tensor M includes the tensors L and N from (1). The intergranular-strain tensor
is determined by its evolution equation

dδij

dt
=Fij (D,�). (3)

For detailed forms of M and F, see the Appendix.
The function F in (3) is such that, under monotonic loading with a fixed direction of

deformation D/‖D‖, the tensor � tends asymptotically to a certain value. In turn, the tensor
M is constructed in such a way that, as � approaches its asymptotic value, the constitutive
response of (2) approaches the response of the basic equation (1). Thus, during monotonic
unidirectional deformation the extended equation gradually turns into the original one. On
the other hand, for small-amplitude alternating deformation the response produced by (2), (3)
is close to being linearly elastic, if the amplitude is small enough.

An initial value of � required for the integration of Equation (3) is often indeterminate
when solving a particular problem. Note that the indeterminacy of the initial values of cer-
tain state variables is typical of plasticity models in which these variables are determined by
the foregoing deformation. In problems with multi-cycle deformation, the influence of the ini-
tial value of � vanishes after 2–3 cycles. In the numerical calculations in this paper the initial
value of � is taken to be zero.

Examples of how the extended hypoplasticity relation works for cyclic loading can be
found in [12].

3. Boundary-value problem

In the dynamic problem, constitutive equations (2), (3) are supplemented with the evolution
equation for the void ratio (with incompressible grains)

de

dt
= (1+ e) trD (4)

and the equation of motion (without mass forces)

div T=�
dv
dt

, (5)

where v is the velocity field, and � is the density of the material.
We study the problem of the symmetric expansion of a cavity in which all quantities are

functions of the radial coordinate and time. In the cylindrical coordinates r, ϕ, z, a symmet-
ric expansion under plane strain conditions (infinitely long cavity) is described by the veloc-
ity component vr , the stress components Trr , Tϕϕ, Tzz, the intergranular-strain components
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δrr , δϕϕ and the void ratio e. The stretching tensor has two nonzero components Drr =∂vr/∂r

and Dϕϕ =vr/r. In what follows, for brevity we will write v, Tr , Tϕ, Tz, δr , δϕ , respectively, for
vr , Trr , Tϕϕ,, Tzz, δrr , δϕϕ .

In cylindrical coordinates, Equations (5), (4) are written, respectively, as

∂T r

∂r
+ 1

r
(Tr −Tϕ)=�

dvr

dt
, (6)

de

dt
= (1+ e)

(
∂v

∂r
+ v

r

)
. (7)

For brevity, we do not write out the constitutive functions in detail; for the considered case
of cylindrical symmetry this can easily be done using the functions given in the Appendix.
We write the constitutive equations in general form showing only the dependence of the time
derivatives on the other functions involved in the problem:

dTr

dt
=Hr

(
Tr, Tϕ, Tz,

∂v

∂r
,
v

r
, δr , δϕ, e

)
, (8)

dTϕ

dt
=Hϕ

(
Tr, Tϕ, Tz,

∂v

∂r
,
v

r
, δr , δϕ, e

)
, (9)

dTz

dt
=Hz

(
Tr, Tϕ, Tz,

∂v

∂r
,
v

r
, δr , δϕ, e

)
, (10)

dδr

dt
=Fr

(
∂v

∂r
,
v

r
, δr , δϕ

)
, (11)

dδϕ

dt
=Fϕ

(
∂v

∂r
,
v

r
, δr , δϕ

)
. (12)

The initial-boundary-value problem for Equations (6–12) with the unknown functions
v, Tr , Tϕ, Tz, δr , δϕ, e is formulated for a domain r ∈ [ra(t), rb(t)], t�0, where ra(t) is the radius
of the cavity, and rb(t) is the outer radius of the domain where the solution is sought. For a
cavity in an infinite body, rb =∞. The motion of the boundaries ra(t), rb(t) is determined by
the integration of the velocity starting with initial values r0

a , r0
b . Initial conditions for all the

functions are prescribed on the interval [r0
a , r0

b ].
The boundary condition at ra(t) and rb(t) can be taken as either the velocity or the stress

component Tr as a function of time. For a cavity in an infinite body it is natural to put
v(∞) = 0 or Tr(∞) = const. However, in the numerical solution an infinite outer radius, as
required by the mathematical formulation of the problem, is replaced with a finite radius rb.
This leads to a spurious reflection from the outer boundary with either of the conditions
v(∞)=0, Tr (∞)=const. Increasing the outer radius does not eliminate this problem: although
the amplitude of the outgoing and, correspondingly, the reflected waves may be small and
even negligible far away from the cavity owing to geometrical attenuation, the amplitude of
the reflected waves increases again as they approach the cavity because of the same geometri-
cal effect. Even in the presence of material damping the reflected waves in the vicinity of the
cavity may essentially distort the solution as compared to that for an infinite domain. This
fact makes it necessary to introduce a nonreflecting boundary condition at rb which will make
the boundary transparent for outgoing waves and thus imitate an unbounded domain.
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Since the amplitude of a wave substantially decreases as it propagates from the cavity, the
wave far away from the cavity can be well approximated by a linear elastic wave. If, in addi-
tion, we neglect the cylindrical or spherical geometry and assume the wave at r � ra to be
a plane longitudinal one, this allows us to prescribe a simple nonreflecting boundary condi-
tion at rb � ra . For a plane elastic wave propagating in the positive x-direction with a wave
speed c and described by a function f (x −ct), the partial derivatives are connected with each
other as ∂f /∂t =−c∂f /∂x. The required boundary condition in terms of velocity thus takes
the form

∂v

∂t

∣∣∣∣
(rb,t)

=−c
∂v

∂r

∣∣∣∣
(rb,t)

(13)

with the wave speed c = √
C/�, where the small-strain uniaxial stiffness C at r = rb can be

found directly from the constitutive equation used. The effectiveness of the boundary condi-
tion (13) will be demonstrated later by a numerical example.

For a spherical cavity, the symmetric expansion is described in spherical coordinates r, ϕ, θ

by the velocity component vr , the stress components Trr , Tϕϕ = Tθθ , the intergranular-strain
components δrr , δϕϕ = δθθ and the void ratio e. The stretching tensor has three nonzero com-
ponents Drr = ∂vr/∂r and Dϕϕ =Dθθ = vr/r. The equation of motion, the constitutive equa-
tions and the mass-balance equation for a spherical cavity are written, respectively, as

∂T r

∂r
+ 2

r
(Tr −Tϕ)=�

dvr

dt
, (14)

dTr

dt
=Hr

(
Tr, Tϕ,

∂v

∂r
,
v

r
, δr , δϕ, e

)
, (15)

dTϕ

dt
=Hϕ

(
Tr, Tϕ,

∂v

∂r
,
v

r
, δr , δϕ, e

)
, (16)

dδr

dt
=Fr

(
∂v

∂r
,
v

r
, δr , δϕ

)
, (17)

dδϕ

dt
=Fϕ

(
∂v

∂r
,
v

r
, δr , δϕ

)
, (18)

de

dt
= (1+ e)

(
∂v

∂r
+2

v

r

)
. (19)

4. Numerical algorithm

A numerical approach developed in [10, 11] for dynamic plane-wave problems is modified here
for the solution of cylindrical and spherical problems. The approach consists in the replace-
ment of a continuous body by a discrete system with the mass of the medium being concen-
trated at separate surfaces (lumped masses). The equations of motion for the masses and the
constitutive equations for the subdomains constitute a finite-difference approximation of the
original partial differential equations.
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Figure 1. Discretisation of the domain.

4.1. Cylindrical problem

The domain between two concentric cylindrical surfaces of radii r0
a and r0

b where the solution
is sought is divided by N concentric surfaces into N − 1 subdomains as shown in Figure 1.
The mass of a subdomain i is assumed to be concentrated at the surface i. The mass calcu-
lated per unit length in the z-direction and per radian in ϕ is given by

mi = 1
2�

(
r2
i+1 − r2

i

)
, (20)

where ri, ri+1 are the initial radii of the corresponding surfaces, and � stands for the initial
density. The mass of the surface N remains unspecified.

The equation of motion for the mass mi reads

mi

ri

dvi

dt
=T −

ri −T +
r(i−1)

, (21)

where T +
ri , T

−
ri denote the stresses at the boundaries of the subdomains, see Figure 1, and vi

is the radial velocity of the mass. The mass mi is independent of the change in the radius of
the surface i during the cavity expansion.

The stress components are assumed to vary linearly in the subdomains. If Tri is the value
of the radial stress in the middle point of the subdomain i, the stresses T +

ri , T
−
ri at the bound-

aries are

T +
ri =Tri + 1

2 (ri+1 − ri)
∂T r

∂r

∣∣∣∣
i

, (22)

T −
ri =Tri − 1

2
(ri+1 − ri)

∂T r

∂r

∣∣∣∣
i

. (23)

Once the mass of the subdomains is concentrated at their boundaries, the material in the
subdomains is treated as inertia-free. This allows us to find the gradient of the radial stress
in (22), (23) from the static equilibrium equation

∂T r

∂r
+ 1

r
(Tr −Tϕ)=0 (24)
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written for the middle of the subdomain:

∂T r

∂r

∣∣∣∣
i

=2
Tϕi −Tri

ri + ri+1
. (25)

Substitution of (22), (23), (25) in (21) gives the equation of motion of the mass i in the
form:

mi

ri

dvi

dt
=Tri −Tr(i−1) + ri+1 − ri

ri+1 + ri

(
Tri −Tϕi

)+ ri − ri−1

ri + ri−1

(
Tr(i−1) −Tϕ(i−1)

)
. (26)

Equation (26) is used in the numerical calculations for i =2 to N −1. The motion of the
mass m1 is determined by the equation

m1

r1

dv1

dt
=Tr1 + r2 − r1

r2 + r1

(
Tr1 −Tϕ1

)−Tra, (27)

where Tra is a boundary condition for the radial stress at r = ra . The motion of the mass mN

is determined by the boundary condition (13)

dvN

dt
=−c

vN −vN−1

rN − rN−1
. (28)

Owing to the invariance of the masses mi with respect to the deformation of the medium,
the use of the equations of motion in the form (26), (27) does not require the calculation and
the updating of the density � in the case of large strains.

If we substitute (20) for mi in (26), we obtain

1
2
�

ri+1 + ri

ri

dvi

dt
= Tri −Tr(i−1)

ri+1 − ri
+ Tri −Tϕi

ri+1 + ri
+ (ri − ri−1)

(
Tr(i−1) −Tϕ(i−1)

)

(ri+1 − ri)(ri + ri−1)
. (29)

It is easily seen that (29) is a finite-difference approximation of the original equation of
motion (6). Equation (29) turns asymptotically into (6) as max�r →0 if

lim
max�r→0

ri − ri−1

ri+1 − ri
=1. (30)

The stress components, the intergranular-strain components and the void ratio in each
subdomain are calculated by the integration of their evolution equations (8–12), (7), whereas
the components of the stretching tensor are found as

∂v

∂r

∣∣∣∣
i

= vi+1 −vi

ri+1 − ri
, (31)

v

r

∣∣∣
i
= vi+1 +vi

ri+1 + ri
. (32)

The time integration of the equations is performed implicitly as

f (t +�t)=f (t)+ [αf ′(t)+ (1−α)f ′(t +�t)]�t, (33)

where f and f ′ denote the set of the unknown functions and their time derivatives, respec-
tively, and α is the parameter of the scheme, 0�α < 1. Equation (33) is solved by successive
approximations.
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4.2. Spherical problem

The numerical scheme for the spherical problem can be constructed in a similar way. Omitting
intermediate computations, we write out only equations corresponding to (20), (26), (27):

mi = 1
3
�

(
r3
i+1 − r3

i

)
, (34)

mi

r2
i

dvi

dt
=Tri −Tr(i−1) +2

ri+1 − ri

ri+1 + ri
(Tri −Tϕi)+2

ri − ri−1

ri + ri−1

(
Tr(i−1) −Tϕ(i−1)

)
, (35)

m1

r2
1

dv1

dt
=Tr1 +2

r2 − r1

r2 + r1
(Tr1 −Tϕ1)−Tra. (36)

5. Numerical examples

Numerical solutions presented below are calculated for a cylindrical cavity with an initial
radius of 0·2 m, with a homogeneous initial stress state Tr = Tϕ = Tz = −100 kPa and an ini-
tial void ratio of 0·9. For dry sand this void ratio corresponds to an initial density of 1·4 ×
103 kg/m3. The outer boundary of the computational domain is taken at r0

b =30 m.
To show the numerical performance of the boundary condition (13), let the cavity be

loaded by a single pressure impulse on the cavity wall as shown in Figure 2. Two cases of
the boundary condition at the outer boundary are considered: the case Tr =const =−100 kPa
and the transparent boundary condition (13). The corresponding solutions are compared in
Figure 3. It is seen that the inaccuracy related to the boundary condition (13) caused by the
cylindrical geometry, the non-elastic effects in the material behaviour and by the numerics
itself is negligible: the outgoing wave goes through the boundary without reflection.

In the further examples, the cavity is loaded by a cyclic sinusoidal pressure Tr on the cavity
wall varying between −100 and −150 kPa. Figures 4–7 show two cases with different frequen-
cies, 30 and 10 Hz, with all other parameters being the same as before.

The periodic loading results in a steady increase of the cavity radius. Figure 4 shows
the change in the radius during the first 30 cycles of the loading. In spite of the fact that
the amplitude of the loading is the same in both cases, the rate of expansion (the change
in the radius per cycle) in the high-frequency case of 30 Hz is 60 times higher than in the
low-frequency case of 10 Hz.

The dynamic pressure-expansion curves at the beginning of the expansion are compared
in Figure 5. The curves are essentially different. The hysteresis and, consequently, the work
done by the loading in one cycle is much higher in the high-frequency case.

The cyclic loading of the cavity is accompanied by cyclically changing shear stresses in
the vicinity of the cavity. According to the general characteristics of granular materials, this

Figure 2. Boundary condition at ra =0·2 m for the solutions shown in Figure 3.
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Figure 3. Velocity profiles at different times produced by a pressure impulse (Figure 2) in a cylindrical cavity with
r0
a = 0·2 m. Left column: boundary condition Tr = const at rb = 30 m. Right column: the nonreflecting plane-wave

boundary condition (13) at rb =30 m.

Figure 4. The change in the radius of a cylindrical cavity loaded by a cyclic pressure varying between −100 and
−150 kPa with a frequency of 30 Hz (left) and 10 Hz (right). Initial radius: 0·2 m.

results in a gradual compaction of the material. The change in the void ratio in the vicinity
of the cavity is shown in Figure 6 which again reveals a pronounced influence of the fre-
quency on the solution. Not only is the rate of compaction much higher in the high-fre-
quency case, but also the compaction spreads much farther from the cavity wall. Obviously,
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Figure 5. Pressure-expansion curves for the same problems as in Figure 4. Left: 30 Hz, right: 10 Hz.

Figure 6. Void ratio in the vicinity of the cavity after 12, 24, 36, 48 and 60 cycles of loading (from the upper to
the lower curve, respectively). Left: 30 Hz, right: 10 Hz.

in cavity problems the compaction of the material facilitates the increase of the cavity radius
as compared to problems in which the material does not exhibit steady compaction or is
incompressible.

The cavity expansion not only leads to the compaction of the material in the vicinity of
the cavity but also to the change in the stress state. The time dependence of the stress com-
ponents in the material element initially situated at r =1·0 m is shown in Figure 7. In the
high-frequency case, the average absolute values of all stress components are rapidly reduced
at the beginning of the loading and then change rather slowly. The ratios between the average
values after the reduction do not correspond to a hydrostatic state as was the case initially.
In the low-frequency case, apart from the fact that the average values of the stresses change
slowly, the amplitudes of the stresses are much smaller.

The significant reduction in the stress level observed in the high-frequency case can be
explained if we again recall that, according to the general characteristics of granular mate-
rials, cyclic shearing leads to compaction or, if volume change is prohibited by kinematical
restrictions, to a reduction in the pressure. Although the material in the vicinity of the cav-
ity is compacted due to the cyclic deformation, this compaction is not enough for the mean
pressure to remain at the same level. As a result, the absolute values of the stresses decrease.

As mentioned in the Introduction, the change in the stress amplitudes with radius is differ-
ent in the quasi-static and the dynamic problems: the stresses decrease slower in the dynamic
case and thus spread farther from the cavity. For a cylindrical cavity in an elastic medium, the
stress amplitudes are proportional to 1/rn (in the dynamic case – asymptotically for r →∞)
with n = 2 and 0·5 for the quasi-static and the dynamic problems, respectively. For the two
numerical examples just considered, Table 1 shows the amplitudes of the stress component Tr
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Figure 7. Stress components at r =1·0 m versus time. Left: 30 Hz, right: 10 Hz.

Table 1. Comparison of the solutions.

Frequency �Tr(ra) �Tr(r) n

(Hz) (kPa) (kPa) (37)

30 50 12–20 0·75–1·0
10 50 2·9 1·77
30 1 0·056 1·79

at two points with initial coordinates ra =0·2 m (cavity wall) and r =1 m. In the first example
(30 Hz) the stress amplitude at r =1 m is taken for t >0·5 s. The exponent n given in Table 1
is estimated from the stress amplitudes at the two points by the formula

n= log[�Tr(r)/�Tr(ra)]
log(ra/r)

. (37)

The exponent n for the low-frequency problem is greater and closer to that for the quasi-
static solution. Also shown in Table 1 is a third case for a frequency of 30 Hz and a small
loading amplitude of 1 kPa. Surprisingly, despite the high frequency, the attenuation of the
stresses in this case is high and results in a high exponent n. The explanation is, however,
simple: the small-amplitude loading causes nearly elastic deformations which are characterised
by relatively high stiffness and, correspondingly, by a large wavelength. In this case the speed
of longitudinal small-amplitude waves, which is estimated from the constitutive equation, is
about 260 m/s, which for a frequency of 30 Hz gives a wavelength of 8·7 m – large enough in
comparison with the cavity size. Contrary to this, the plastic deformations which the mate-
rial undergoes during large-amplitude loading are characterised by lower stiffness and shorter
wavelengths.

Solutions to the spherical problem are qualitatively similar to those to the cylindrical
problem: the expansion is also accompanied by the compaction of the material and by the
decrease in the absolute values of stresses in the vicinity of the cavity. There are, however,
noticeable quantitative differences: if the spherical problem is solved with the same parame-
ters, the attenuation of the stress amplitude with distance from the cavity is much higher than
in the cylindrical case. As a consequence, the rate of the cavity expansion and the rates of the
compaction and the stress reduction are much lower.
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6. Discussion of applications

The cavity-expansion problem described above allows us to model dynamic processes related
to the cyclic deformation of granular soils such as deep vibratory compaction [8] (cylindrical
cavity) and vibratory pile driving (spherical cavity).

In the deep vibratory compaction technique, the soil is compacted by a vibrating steel cyl-
inder (vibrator) placed vertically in a soil layer. The vibrator is 30–45 cm in diameter, 3–5 m
in length and has inside a motor with a rotating eccentric mass which causes the axis of the
vibrator to rotate about the vertical axis with a frequency of 30–60 Hz.

The accurate modelling of deep vibratory compaction is extremely difficult if at all possi-
ble (in this connection we refer to [18]). This is not only because of the complicated mate-
rial behaviour but also due to the fact that the dynamic problem describing the deformation
of the soil surrounding the vibrator is spatially three-dimensional. Additional difficulties arise
when taking into account the inflow of the new material from above to the immediate vicinity
of the vibrator.

The main goal in the modelling of deep vibratory compaction is to reveal the dependence
of the compaction on the parameters of the vibrator and the soil in order to optimise the
process. The solution of two- or three-dimensional problems is time-consuming and can there-
fore hardly serve this purpose. The one-dimensional problem considered in this paper involves
much less computing time and can thus provide much data required for a detailed modelling.

The two main simplifications entailed in the reduction of the deep vibratory compaction
problem to a one-dimensional one consist in the fact that the rotating force produced by the
vibrator is replaced with an axially symmetric loading, and that the contribution of the ver-
tical displacement of the soil to the compaction is not taken into account. In order to assess
the influence of these simplifications, a number of solutions to the one-dimensional problem
should be compared with the corresponding solutions to a two- or three-dimensional prob-
lem. This may result in establishing correction factors which could subsequently be used in a
one-dimensional analysis.

The introduction of correction factors, either by comparison with experimental data or
with more sophisticated numerical calculations, is also necessary when applying the dynamic
cavity-expansion theory to the modelling of vibratory pile driving. For the quasi-static pene-
tration this approach was adopted, for instance, in [19].

Appendix. Constitutive functions

The tensors L and N in (1), (2) are written as [9]

Lijkl = fbfe

tr(T̂2)
[F 2δK

ikδ
K
jl +a2T̂ij T̂kl ], (A.1)

Nij = fbfefdaF

tr(T̂2)
(T̂ij + T̂ ∗

ij ), (A.2)

where δK
ij is the Kronecker delta, and

T̂ij = Tij

trT
, T̂ ∗

ij = T̂ij − 1
3δK

ij . (A.3)

The factor a in (A1), (A2) is determined by the friction angle ϕc in critical states:

a =
√

3
8

(3− sin ϕc)

sin ϕc

. (A.4)
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The factor F is a function of T̂∗:

F =
√

1
8

tan2 ξ + 2− tan2 ξ

2+√
2 tan ξ cos 3θ

− 1

2
√

2
tan ξ, (A.5)

where

tan ξ =
√

3‖T̂∗‖, cos 3θ =−
√

6
tr(T̂∗3)

[tr(T̂∗2)]3/2
. (A.6)

The factors a and F determine the critical-state surface in the stress space.
Three characteristic void ratios are specified as functions of the mean pressure: the mini-

mal possible void ratio, ed , the critical void ratio, ec, and the void ratio in the loosest state, ei .
The pressure dependence of these void ratios is postulated in the form (compressive stresses are
negative)

ei

ei0
= ec

ec0
= ed

ed0
= exp

[
−

(−trT
hs

)n]
, (A.7)

with the corresponding reference values ei0, ec0, ed0 for zero pressure (ei0 >ec0 >ed0). The con-
stants ei0, ec0, ed0 with the hs, n are material parameters.

The factor

fd =
(

e− ed

ec − ed

)α

, (A.8)

where α is a material parameter, tends to unity as the state of the material approaches a crit-
ical state. The functions fe and fb are defined as

fe =
(ec

e

)β

,

fb = hs

n

(
1+ ei

ei

)(
ei0

ec0

)β (−trT
hs

)1−n [
3+a2 −

√
3a

(
ei0 − ed0

ec0 − ed0

)α]−1

, (A.9)

with a parameter β.
The tensor M in (2) is written as

Mijkl = [ρχmT + (1−ρχ)mR]Lijkl

+
{

ρχ(1−mT )Lijqs δ̂qs δ̂kl +ρχNij δ̂kl if δ̂ijDij >0,

ρχ (mR −mT )Lijqs δ̂qs δ̂kl if δ̂ijDij�0,
(A.10)

where

δ̂ij =
{

δij /‖�‖ if � 	=0,

0 if �=0,
(A.11)

ρ =‖�‖/R, and R,mR,mT ,χ are constitutive parameters.
The evolution equation (3) for the intergranular-strain tensor � is written as

dδij

dt
=

{
Dij −ρβr δ̂ij δ̂klDkl if δ̂ijDij >0,

Dij if δ̂ijDij�0
(A.12)

with a parameter βr .
The constitutive parameters used in the numerical examples in this paper are given in

Table 2.
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Table 2. Constitutive parameters.

ϕc[◦] hs [MPa] ec0 ed0 ei0 α β n R mR mT βr χ

33 1000 0·95 0·55 1·05 0·25 1·5 0·25 4×10−5 5·0 5·0 0·05 1·5
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